Chem 6352 Protecting Groups

Hydroxyl Protection

Methyl Ethers

Formation: CH₂N₂, SiO₂ or HBF₄ NaH, MeI, THF

Stability: Stable to Acid and Base

Cleavage: AlBr₃, EtSH PhSe⁻ Ph₂P⁻ Me₃SiI

Adv./Disadv.: Methyl ethers, with the exception of aryl methyl ethers, are often difficult to remove. However, there are exceptions.

Methylthiomethyl Ethers (MTM)

Formation: MeSCH₂Cl, NaH, THF

Stability: Stable to base and mild acid

Cleavage: HgCl₂, CH₃CN, H₂O AgNO₃, THF, H₂O, base

Adv./Disadv.: The MTM group is a nice substituted methyl ether protecting group that can be removed under neutral conditions employing the indicated thiophiles.

Trityl Ethers

Formation:	Ph ₃ CCl, pyridine, DMAP Ph ₃ C ⁺ BF ₄ ⁻
Stability:	Stable to Base
Cleavage:	Mild Acid (formic or acetic)
Adv./Disadv.:	The trityl group usually goes on and comes off easily. In addition, its steric bulk allows for good selectivity in protecting primary over secondary alcohols.

Protection of 1,2- and 1,3-diols

The protecting groups that mask 1,2- and 1,3-diols (forming either the dioxolane or dioxane, respectively) are often referred to (PREFIX)ylidenes, where the prefix depends on the nature of R and R_1 .

Stability: Stable to Base Cleavage: AcOH, H₂O CAN

Adv./Disadv.: The PMB and Bn acetals have many advantages and are usually easy to prepare and cleave. The PMB and Bn

Protecting Groups for Ketones and Aldehydes

Aldehydes and ketones are most often protected as cyclic and acyclic actals.

Formation:

Stability: Stable to base

Cleavage: Acetals are generally removed with H_3O^+ . Cleavage rates of 1,3-dioxanes have been studied (*Chem Rev* **1967**, *67*, 427) and are:

Adv./Disadv.: Acetals are generally easily prepared and removed. It is of note that α,β -unsaturated carbonyls form acetals much slower than their saturated counter parts, and often result in olefin migration.

Carboxylic Acid Protection

Note that DCC coupling proceeds as follows:

OH

Stability: Fm is stable to acid

Cleavage: Fm is cleaved by mild base (Et₂NH)

2-(Trimethylsilyl)ethoxymethyl Esters (SEM) Helv Chim Acta **1977**, 60, 2711

2-(Trimethylsilyl)ethyl Esters JACS **1984**,*106*, 3030

Cleavage: SEM is removed with fluoride (e.g. TBAF in DMF)

2,2,2-Trichloroethyl Ester JACS 1966, 88, 852

Benzyl Esters

Formation: Acid Chloride and benzyl alcohol (see above)
Stability: Stable to Acid
Cleavage: Hydrogenolysis Na, NH₃ *o-Nitrobenzyl esters Synth* **1980**, 1

Formation: see Benzyl Stability: see Benzyl Cleavage: can be cleaved by photolysis

Orthoesters TL **1983**, *24*, 5571

Protection of Amines

2,2,2-Trichloroethyl Carbamate (TROC)

2-(Trimethylsilyl)ethyl Carbamate (TEOC)

Formation: As above (and many others)

Stability: Stable to base

Cleavage: Strong protic acid (TFA or 3M HCl) TMSI

Allyl Carbamate (ALLOC)

TL **1986**, *27*, 3753

Cleavage: Removed with Pd(0) and reducing agent

Benzyl Carbamate (CBZ)

Formation:	As above
Stability:	Usually stable to acid and base
Cleavage:	Reduction (Mg, NH ₄ Cl, MeOH) For 3-substituted indoles basic hydrolysis

isobutyldi-tert-butylsilyl (BIBS) OL 2011, 13, 4120

